Uranyl Fluoride (UO₂F₂)

The presence of UO_2F_2 is characterized by a cloud of white, smokelike vapor. A nuclear scientist from a French enriched fuel fabrication plant warns that,

"... even a slow leakage of UF $_6$ will give rise to the formation of an opaque and toxic cloud of uranyl fluoride (UO $_2$ F $_2$), which would rule out any possibility of local remedial action unless gas-tight safety equipment including self-contained breathing apparatus is available."

 $\rm UO_2F_2$ is formed as a very fine powder with a particle size of 0.5 microns. ¹⁶ Such small particles settle very slowly, leading to greatest deposition away from the accident site if a wind is blowing. Concentrations of about one mg/m³ $\rm UO_2F_2$ are visible, ¹⁷ and visibility does not exceed 90 cm at concentrations of one g/m³. ¹⁸

One of the worst UF_6 accidents known took place at the Comurhex conversion plant in France. The accident is described in detail in Chapter 15. In a report on the accident the manager of the plant wrote,

"Only a few hundred grams of UF₆ released in a closed facility will create a toxic and blinding cloud for the operators. There is a risk that they would not readily find the emergency exits." ¹⁹

The Plugging Phenomenon

In the case of a slight leak through a UF $_6$ cylinder wall or valve, at low enough temperatures, the UF $_6$ will cool as it passes through the hole, solidify and quickly form a plug. 20 This plug of uranium will block leakage into and out of the hole. How low a temperature is required for a plug to form has not been found in a review of the technical literature. Plugs were formed at sea water temperatures in the *Mont-Louis* accident (documented in Chapter 14). An experiment was carried out by the U.S. Department of Energy (DOE) in which a cylinder containing UF $_6$ was placed under water and a valve removed to permit water to enter the cylinder. Unexpectedly, the reaction led to plugging of the hole, stopping any more water from entering. According to a DOE expert, formation of the plug "is a phenomenon that we don't quite understand." 21

¹⁵ Blum, 1978, p. 168; in: OECD, 1978.

¹⁶ Elert, 1989, p. 11.

¹⁷ Thomas, 1978 p. 250; in: OECD, 1978.

¹⁸ Bouzigues, et. al., 1978, p. 344; in: OECD, 1978.

¹⁹ Bouzigues, et. al., 1978, p. 344; in: OECD, 1978.

²⁰ Ringot and Hamard, 1988, p. 31; in: Strunk and Thornton (eds), undated.

²¹ Nucleonics Week, 30 August 1984, p. 2.